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Abstract

Structural health monitoring is a field that relies on different methodologies to develop procedures that char-
acterize the dynamic properties of physical structures to identify possible deteriorations of their behaviors.
SHM systems include usually a data acquisition subsystem suitable for recording the structure response to
ambient or external excitations. The recorded data are thenanalyzed in order to characterize the dynamic
properties of the considered structure. This paper describes some tests performed by means of a new ad-
vanced SHM system, the Teleco SHM602, on a truncated middle-age tower presently included in an ancient
palace of the XVI century located in the central part of Bologna. These tests rely on models obtained by
means of standard and advanced identification techniques.
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1 Introduction

Civil infrastructures like highways, bridges, airports, seaports, railroads, water management systems, oil and

gas pipelines, are of paramount importance for economic andindustrial development. These systems are char-

acterized by high costs, strong impact on the safety and quality of life for large communities and long operative

lives. Their proper management requires, consequently, the adoption of carefully selected policies developed

taking into account the delicate balance between potentially conflicting requirements like, for instance, achiev-

ing high safety standards and limiting maintenance costs. Moreover, some specific events like earthquakes,

floods or tornadoes can lead to very critical decisions in ascertaining the integrity of surviving structures and

their suitability to fulfill their intended role. Similar problems afflict the evaluation of the state of structures

built during the last century (e.g. many bridges in the United States) and of ancient buildings inside large cities,

exposed to the stress caused by the increase of surface and underground urban transport systems. The relevance

of these problems is not limited, however, to the evaluationof the state of structures potentially damaged by

traumatic events; the advanced technologies implemented in the realization of new projects like, for instance,

buildings with active seismic response control systems areeven more demanding since they require a proper

monitoring concerning the whole operating life of the structures.

All dynamic Structural Health Monitoring (SHM) implementations rely on data, measured with a suitable

sampling rate by a certain number of sensors mounted on the structure to be monitored [1, 2]. Traditional
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SHM systems are essentially composed by a certain number of analog sensors (strain gauges, accelerometers,

temperature sensors) connected, through signal conditioning units, to multichannel data loggers. The measures

obtained with these sensors describe the structure response to external or internal mechanical excitations due

to wind and other meteorological phenomena, vehicle traffic, seismic events, mass movements [3] or to the

use of specific excitation hardware like mechanical shakers[4]. The evaluation of the information contained

in the data is then performed off-line by experts relying on suitable models of the structure to be analyzed

and on the compliance of these models with the measured data [5]. The state of the structure can be finally

evaluated by comparing the responses obtained in reference(integrity) conditions with the current ones; these

comparisons could be (and, sometimes, are) performed by directly extracting from the collected time series

information depending only on the structure, for instance their power spectra. In general it is preferable to

avoid the storage and manipulation of the enormous amounts of data usually generated by SHM systems and to

work only on some form of concentrated information extracted from the data, like dynamic models extracted

from the data by means of identification techniques [2]. These techniques allow not only a large condensation

of information but can also be effectively used to separate the information contained in the acquired data sets

from the observation errors due to the intrinsic noise of thesensors and to other errors due to the inevitable

misfits between the considered class of models and the real process to be described. Thus the power spectrum

associated with an identified model will look as (and will be)a smoothed version of that directly obtained by

applying a FFT to the measured sequences that contains spurious lines due to additive noise.

In this complex and demanding context, SHM (Structural Health Monitoring) methodologies are moving,

taking advantage of the unprecedented development of sensor, microelectronics and microprocessor technolo-

gies, towards their life-long integration in new projects while still playing the role of advanced analysis tools

for evaluating the state of structures not endowed with permanent monitoring systems. In particular, the intro-

duction of MEMS sensors allows the realization of systems that conjugate a reduced cost with performances

suitable for SHM applications. A new generation of SHM systems that integrates advanced sensor technologies

with distributed computational power as well as efficient implementations of identification methodologies is

now appearing on the market. These advanced systems rely on intelligent sensors that elaborate local models

and exchange data, information and models on a local networkunder the supervision of a control/storage unit

accessible also on the Internet. The purpose of this paper isto describe some tests performed with the new

Teleco SHM602 system that has been developed on the basis of researches performed at Bologna University

and realized by Teleco SpA. In order to verify the capabilities of this system, some tests on a truncated middle-

age tower presently included in an ancient palace of the XVI century, Palazzo Saraceni, have been performed

and compared by using identified autoregressive (AR) and “autoregressive plus noise” (AR + noise) models.

The paper is structured as follows. Section 2 describes the purpose of the tests, the structure of the consid-

ered tower and the collected data sets. Section 3 recalls some basic identification results concerning traditional

AR models and the more sophisticated class of AR + noise models that have been used in this analysis; it reports

also a computational procedure for the identification of these models. Section 4 reports the results of the modal

analysis performed on AR and AR + noise models identified fromdata concerning an artificial stimulation of

the structure and from data where the excitation was due to urban traffic. Some concluding remarks are finally

reported in Section 5.
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2 Purpose of the tests and data collection

The purpose of the tests described in the following is to evaluate the suitability of the new SHM system Teleco

SHM602 developed in the context of a cooperation between theUniversity of Bologna and Teleco SpA, in

monitoring old buildings inserted in urban environments. The tests, therefore, do not concern the construc-

tion of a complete description of the dynamical behavior of the considered structure. The architecture of the

SHM602 is compliant with the recommendations reported in [6, 7] and differs from that of traditional SHM

systems in that it is based on a network of sensing units (TSM02) based on MEMS accelerometers (Figure 1a)

and on local computing resources that manage data acquisition, filtering, transmission and also the local con-

struction of dynamical models. These units are connected toa remote data acquisition and storage controller

(TSD10 - Figure 1b) by means of a bus in order to avoid the invasiveness of analog radial connections as well

as their sensitivity to electromagnetic disturbances. MEMS sensors exhibit, in general, a noise floor higher than

traditional piezoelectric seismic accelerometers and this requires a suitable smoothing of the data. They are en-

dowed, however, with a better behavior at low frequencies and with a faster recovery from overload conditions.

Moreover, the identification techniques used for the extraction of dynamical models from the raw measures

perform, intrinsically, an operation that, asymptotically, cancels the effects of the noise. The tests described in

the paper have been performed during the development stage of the TSM02, with the purpose of evaluating the

overall behavior of this unit and of comparing the possible identification techniques to be implemented in the

local firmware.

Figure 1: SHM602 system: (a) sensing units TSM02 and (b) dataacquisition and storage controller TSD10

The building where the tests have been performed, Palazzo Saraceni, is one of the most interesting archi-

tectural examples of Renaissance palaces in Bologna (Figure 2). It was constructed at the beginning of the XVI

century by the Saraceni family and includes in its structurethe much older Bertolotti tower built between the

end of the XII and the beginning of the XIII century and subsequently truncated in the second half of the XV

century. Its present height is 16 m, every side of its square basis has a length of 8.64 m and its walls have a

width of 1.47 m (at ground level). The walls are constructed with the typical technology adopted in Bologna

towers, consisting in two separate walls (an internal ticker wall and an external thinner one); the space between

the walls was filled with stones and mortar. The purpose of thedata collection concerned the identification

of models of the dynamic behavior of the tower under artificial and natural excitation conditions for evaluat-

ing the performance of the TSM02 sensors and for comparing different identification procedures. The main

components of this system consist in a controller/storage unit and in intelligent sensing units connected to the
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controller by means of a serial bus. Every unit can send the measures of the accelerations measured on two

orthogonal axes and that of the temperature, with a samplingrate that can be selected by the user between 20 Hz

and 80 Hz. The sensing units, that rely on proprietary signalprocessing techniques, perform the identification

of dynamic models whose order can be selected between 2 and 10. Due to its good signal-to-noise ratio even

in the low and medium-low frequency ranges, the SHM602 system is a suitable tool for monitoring flexible

structures like suspended bridges and tall towers; moreover, thanks to its flexibility, it can be efficiently used

also for more stiff structures like historical buildings and short-span bridges. The data concerning the tests

described in this paper have been collected at a sampling rate of 80 Hz.

Figure 2: Palazzo Saraceni in Bologna

3 Identification of AR and AR+noise models

The dynamic behavior of the tower has been identified by usingtwo types of models: standard AR models and

AR + noise models.

A classic AR model of ordern is described, in the scalar case, by the equation

y(t) + α1 y(t− 1) + · · ·+ αn y(t− n) = e(t) (1)

where the driving processe(t) is white noise andy(t) denotes the measure of the process to be modeled at time

t [8, 9]. Note thate(t) plays the double role of excitation of the system modes and equation error. Starting

from N observationsy(1), y(2), . . . , y(N), the AR parameters can be consistently estimated by means ofthe

well-known least squares formula

θ̂ =

(
N∑

t=n+1

ϕy(t)ϕ
T
y (t)

)−1 N∑

t=n+1

ϕy(t) y(t) (2)

where

ϕy(t) = [y(t− 1) . . . y(t− n) ]T (3)

θ̂ =
[
α̂1 · · · α̂n

]T
. (4)
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To take into account also the presence of measurement errors, it is possible to consider “AR + noise” models of

the type

x(t) + α1 x(t− 1) + · · ·+ αn x(t− n) = e(t) (5)

y(t) = x(t) + w(t), (6)

wherex(t) denotes an AR process driven by the inpute(t) andy(t) is the available observation, affected by

the additive noise processw(t). It will be assumed thate(t) andw(t) are zero–mean white processes, mutually

uncorrelated and with unknown variancesσ2∗
e andσ2∗

w . It is easy to show that the model (5)–(6) is not an all–

pole model and the use of the least squares estimator (2) leads to biased estimates [10, 11]. In particular, it can

be proved that the estimated AR poles are biased toward the center of the unit circle, leading thus to a smoothed

spectrum [11]. In this paper, the AR + noise models will be identified by means of the approach introduced

in [12], that is characterized by a reduced computational complexity and by a good estimation accuracy. This

method, that maps the AR + noise identification problem into an errors–in–variables one, is summarized in the

next subsection (see [12] for further details).

3.1 Identification of AR + noise models

Let us define the vectors

ϕ̄x(t) = [x(t)x(t− 1) . . . x(t− n) ]T (7)

ϕ̄y(t) = [y(t) y(t− 1) . . . y(t− n) ]T = [y(t)ϕT
y (t) ] (8)

ϕ̄w(t) = [w(t)w(t − 1) . . . w(t− n) ]T (9)

ϕ̄e(t) = [e(t) 0 . . . 0
︸ ︷︷ ︸

n

]T , (10)

and the extended parameter vector

θ̄∗ =
[
1 α1 . . . αn

]T
=
[
1 θ∗T

]T
. (11)

It is possible to represent model (5)–(6) in the form

(
ϕ̄T
x (t)− ϕ̄T

e (t)
)
θ̄∗ = 0 (12)

ϕ̄y(t) = ϕ̄x(t) + ϕ̄w(t). (13)

Define also the covariance matrices

Rxe = E
[ (

ϕ̄x(t)− ϕ̄e(t)
)(
ϕ̄x(t)− ϕ̄e(t)

)T
]

(14)

Ry = E [ ϕ̄y(t) ϕ̄
T
y (t) ], (15)

whereE[ · ] denotes the mathematical expectation. By taking into account (12), (13) and the assumptions on

e(t), w(t), it is possible to obtain the relations

Rxe θ̄
∗ = 0 (16)

Ry = Rxe + R̃∗, (17)
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where

R̃∗ = diag [σ2∗
e + σ2∗

w , σ2∗
w In]. (18)

Note that the AR coefficients cannot be directly estimated bymeans of (16)–(17) because the variancesσ2∗
e , σ2∗

w

are unknown and only the matrixRy can be estimated from the data sequencey(1), y(2), . . . , y(N). Consider

now the problem of finding the family of all nonnegative definite diagonal matrices̃R of the type

R̃ = diag [σ2
e + σ2

w, σ
2
w In] (19)

such that

Ry − R̃ ≥ 0, min eig (Ry − R̃) = 0. (20)

It is possible to prove [12] that this family is defined by the pairs(σ2
w, σ

2
e) defined by

σ2
w ∈ [ 0, σ2

wmax ] (21)

σ2
e = σ2

y − σ2
w + rT θ(σ2

w). (22)

where

σ2
wmax = min eig(Ry) (23)

θ(σ2
w) = −(R− σ2

w In)
−1 r, (24)

while the scalarσ2
y , the vectorr and the matrixR can be obtained from the following partition ofRy

Ry =

[
σ2
y rT

r R

]

. (25)

Every value ofσ2
w ∈ [ 0, σ2

wmax ] leads to a coefficient vector (24). Moreover, also the varianceσ2∗
w of w(t)

belongs to[ 0, σ2
wmax ] and the associated coefficient vector coincides withθ∗, i.e. θ(σ2∗

w ) = θ∗. To estimate

σ2∗
w (and thusθ∗) within the admissible interval, the following cost function can be proposed [12]

J(σ2
w) = ‖Rh

y θ̄(σ
2
w)‖

2
2 = θ̄(σ2

w)
T (Rh

y )
TRh

y θ̄(σ2
w), σ2

w ∈ [0, σ2
wmax], (26)

where

θ̄(σ2
w) =

[
1 θT (σ2

w)
]T

(27)

Rh
y = E [ϕh

y (t)ϕ
T
y (t) ] (28)

ϕh
y(t) = [y(t− n− 1) y(t − n− 2) . . . y(t− n− q) ]T , (29)

andq ≥ n is a user–chosen parameter. In fact, it is easy to show that

Rh
y θ̄

∗ = 0. (30)

Relation (30) consists in a set ofq high–order Yule–Walker equations that are not directly used to identify the

parametersθ∗ but only to construct the cost function (26).
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In the practical implementation of the algorithm, the covariance matricesRy andRh
y must be replaced by

the sample estimates

R̂y =
1

N − n

t=N∑

t=n+1

ϕy(t)ϕ
T
y (t) (31)

R̂h
y =

1

N − n− q

t=N∑

t=n+q+1

ϕh
y(t)ϕ

T
y (t), (32)

so that the varianceσ2∗
w is estimated by minimizingJ(σ2

w) on [ 0, σ̂2
wmax ], where

σ̂2
wmax = min eig(R̂y). (33)

4 Experimental results

All measures have been performed by positioning a TSM02 sensor at the highest floor of the tower. A first set

of measures describes the response to a pulse applied to the structure by means of a falling mass; the considered

sampling frequency was 80 Hz. Two typical responses, concerning time intervals of 6 and 7 s are reported in

Figure 3; it can be observed that the measured acceleration is relatively high, of the order of 100 mg. The

identification of these data has been performed by means of order 14 AR and AR + noise models. The power

spectral density of the AR models is reported (dashed line) in Figure 4 where the power spectral density of the

AR + noise models is plotted with a solid line. It can be observed that in both plots the difference between

the spectra of AR and AR + noise models is barely visible and that the results concerning the two data sets

are strongly congruent. Both plots show peaks at the frequencies of, approximately, 10 Hz, 23 Hz and 35 Hz.

Other data have been collected by recording the response to the excitation provided by urban traffic. Two
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Figure 3: Measured response to falling mass impulses

typical sequences are reported in Figure 5; they refer to time intervals of slightly more than 60 s and 350 s. In

these cases the maximal acceleration that has been observed(4 mg and 8 mg) is remarkably lower than in the

previous tests and the signal to noise ratio is worse; the background noise clearly visible in Figure 5 is due both

to the sensor and to the traffic. Also in this case order 14 AR and AR + noise models have been identified from

the data. The power spectra concerning AR models are reported (dashed line) in Figure 6 versus the power
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Figure 4: Power spectra of AR (dashed) and AR + noise (solid) models (impulse excitation)
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Figure 5: Tower response to urban traffic
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Figure 6: Power spectra of AR (dashed) and AR+noise (solid) models (urban traffic)

spectra (solid line) of the AR + noise models. A peak at 10 Hz can be clearly observed in all plots. The plot
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associated with the first AR model shows also a small peak at 3.5 Hz.

The plots concerning AR + noise models show a large peak at 10 Hz; the first plot shows also modest peaks

at 3.5 Hz, 17 Hz and 23 Hz, the second one shows small peaks at 17Hz, 28 Hz and 35 Hz.

5 Concluding remarks

This paper has described some results concerning the modal analysis of a medieval tower now included in a

more recent building and located in Bologna, Italy. The analysis has been performed by means of MEMS–

based sensors TSM02 endowed with local computational capabilities. The purpose of these tests has been the

evaluation of the performance of a new SHM system and the comparison of the results obtained by identifying

AR and AR + noise models. Both models have given congruent results; AR + noise models, however, lead to

more detailed analyses when the data are characterized by poor signal to noise ratios as happens with urban

traffic excitation.
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