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Abstract

Structural health monitoring is a field that relies on diéfiermethodologies to develop procedures that char-
acterize the dynamic properties of physical structuredeatify possible deteriorations of their behaviors.
SHM systems include usually a data acquisition subsystétade for recording the structure response to
ambient or external excitations. The recorded data aredhatyzed in order to characterize the dynamic
properties of the considered structure. This paper destsbme tests performed by means of a new ad-
vanced SHM system, the Teleco SHM602, on a truncated mialgkgower presently included in an ancient
palace of the XVI century located in the central part of Bolag These tests rely on models obtained by
means of standard and advanced identification techniques.
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1 Introduction

Civil infrastructures like highways, bridges, airporteaports, railroads, water management systems, oil and
gas pipelines, are of paramount importance for economidrahatrial development. These systems are char-
acterized by high costs, strong impact on the safety andtguélife for large communities and long operative
lives. Their proper management requires, consequentlyadoption of carefully selected policies developed
taking into account the delicate balance between potgntahflicting requirements like, for instance, achiev-
ing high safety standards and limiting maintenance costerebVer, some specific events like earthquakes,
floods or tornadoes can lead to very critical decisions ie@sming the integrity of surviving structures and
their suitability to fulfill their intended role. Similar pblems afflict the evaluation of the state of structures
built during the last century (e.g. many bridges in the Uhiates) and of ancient buildings inside large cities,
exposed to the stress caused by the increase of surface @adjround urban transport systems. The relevance
of these problems is not limited, however, to the evaluatibthe state of structures potentially damaged by
traumatic events; the advanced technologies implementéteirealization of new projects like, for instance,
buildings with active seismic response control systemsaes more demanding since they require a proper
monitoring concerning the whole operating life of the stoues.

All dynamic Structural Health Monitoring (SHM) implemetitans rely on data, measured with a suitable
sampling rate by a certain number of sensors mounted on riheflge to be monitored [1, 2]. Traditional



SHM systems are essentially composed by a certain numb@atdgsensors (strain gauges, accelerometers,
temperature sensors) connected, through signal condigamits, to multichannel data loggers. The measures
obtained with these sensors describe the structure resporexternal or internal mechanical excitations due
to wind and other meteorological phenomena, vehicle tradigismic events, mass movements [3] or to the
use of specific excitation hardware like mechanical shal@rsThe evaluation of the information contained
in the data is then performed off-line by experts relying aitable models of the structure to be analyzed
and on the compliance of these models with the measured Satd lie state of the structure can be finally
evaluated by comparing the responses obtained in refefariegrity) conditions with the current ones; these
comparisons could be (and, sometimes, are) performed bgtljirextracting from the collected time series
information depending only on the structure, for instarfusirtpower spectra. In general it is preferable to
avoid the storage and manipulation of the enormous amotidist® usually generated by SHM systems and to
work only on some form of concentrated information extrddiem the data, like dynamic models extracted
from the data by means of identification techniques [2]. €hteshniques allow not only a large condensation
of information but can also be effectively used to sepatfageiriformation contained in the acquired data sets
from the observation errors due to the intrinsic noise ofg@esors and to other errors due to the inevitable
misfits between the considered class of models and the reed$s to be described. Thus the power spectrum
associated with an identified model will look as (and will Be3moothed version of that directly obtained by
applying a FFT to the measured sequences that containggglinies due to additive noise.

In this complex and demanding context, SHM (Structural Hellonitoring) methodologies are moving,
taking advantage of the unprecedented development of senswoelectronics and microprocessor technolo-
gies, towards their life-long integration in new projectkile still playing the role of advanced analysis tools
for evaluating the state of structures not endowed with paent monitoring systems. In particular, the intro-
duction of MEMS sensors allows the realization of systenas tonjugate a reduced cost with performances
suitable for SHM applications. A new generation of SHM sgstahat integrates advanced sensor technologies
with distributed computational power as well as efficienpiementations of identification methodologies is
now appearing on the market. These advanced systems refedigent sensors that elaborate local models
and exchange data, information and models on a local netwatkr the supervision of a control/storage unit
accessible also on the Internet. The purpose of this paferdsescribe some tests performed with the new
Teleco SHM602 system that has been developed on the basisezrches performed at Bologna University
and realized by Teleco SpA. In order to verify the capak#itof this system, some tests on a truncated middle-
age tower presently included in an ancient palace of the Xvitwry, Palazzo Saraceni, have been performed
and compared by using identified autoregressive (AR) antbfagressive plus noise” (AR + noise) models.

The paper is structured as follows. Section 2 describesulmope of the tests, the structure of the consid-
ered tower and the collected data sets. Section 3 recalle basic identification results concerning traditional
AR models and the more sophisticated class of AR + noise maldat have been used in this analysis; it reports
also a computational procedure for the identification oféhmodels. Section 4 reports the results of the modal
analysis performed on AR and AR + noise models identified fdata concerning an artificial stimulation of
the structure and from data where the excitation was duddmnuiraffic. Some concluding remarks are finally
reported in Section 5.



2 Purpose of the tests and data collection

The purpose of the tests described in the following is towatal the suitability of the new SHM system Teleco
SHM602 developed in the context of a cooperation betweerUtiieersity of Bologna and Teleco SpA, in
monitoring old buildings inserted in urban environmentdieTests, therefore, do not concern the construc-
tion of a complete description of the dynamical behaviorhef tonsidered structure. The architecture of the
SHM602 is compliant with the recommendations reported jrn7Jéand differs from that of traditional SHM
systems in that it is based on a network of sensing units (T3Mased on MEMS accelerometers (Figure 1a)
and on local computing resources that manage data acqnijdiilitering, transmission and also the local con-
struction of dynamical models. These units are connectedréanote data acquisition and storage controller
(TSD10 - Figure 1b) by means of a bus in order to avoid the imgasss of analog radial connections as well
as their sensitivity to electromagnetic disturbances. ME$dnsors exhibit, in general, a noise floor higher than
traditional piezoelectric seismic accelerometers argirdqjuires a suitable smoothing of the data. They are en-
dowed, however, with a better behavior at low frequenciebveith a faster recovery from overload conditions.
Moreover, the identification techniques used for the ektvacof dynamical models from the raw measures
perform, intrinsically, an operation that, asymptotigatlancels the effects of the noise. The tests described in
the paper have been performed during the development stége BSM02, with the purpose of evaluating the
overall behavior of this unit and of comparing the possidientification techniques to be implemented in the
local firmware.

TELECO

Figure 1: SHM602 system: (a) sensing units TSM02 and (b) aleqaisition and storage controller TSD10

The building where the tests have been performed, Palazac&a, is one of the most interesting archi-
tectural examples of Renaissance palaces in Bologna @R)uit was constructed at the beginning of the XVI
century by the Saraceni family and includes in its structbeemuch older Bertolotti tower built between the
end of the Xl and the beginning of the XlII century and suhssgly truncated in the second half of the XV
century. Its present height is 16 m, every side of its squasisthas a length of 8.64 m and its walls have a
width of 1.47 m (at ground level). The walls are constructéththe typical technology adopted in Bologna
towers, consisting in two separate walls (an internal tiekall and an external thinner one); the space between
the walls was filled with stones and mortar. The purpose ofddtte collection concerned the identification
of models of the dynamic behavior of the tower under artifiaizd natural excitation conditions for evaluat-
ing the performance of the TSM02 sensors and for comparifigreint identification procedures. The main
components of this system consist in a controller/storageamd in intelligent sensing units connected to the
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controller by means of a serial bus. Every unit can send thesares of the accelerations measured on two
orthogonal axes and that of the temperature, with a samgdieghat can be selected by the user between 20 Hz
and 80 Hz. The sensing units, that rely on proprietary signatessing techniques, perform the identification
of dynamic models whose order can be selected between 2 arlduEdto its good signal-to-noise ratio even
in the low and medium-low frequency ranges, the SHM602 gystea suitable tool for monitoring flexible
structures like suspended bridges and tall towers; morgthanks to its flexibility, it can be efficiently used
also for more stiff structures like historical buildingsdashort-span bridges. The data concerning the tests
described in this paper have been collected at a sampliagpf&0 Hz.

Figure 2: Palazzo Saraceni in Bologna

3 Identification of AR and AR+noise models

The dynamic behavior of the tower has been identified by usiogypes of models: standard AR models and
AR + noise models.
A classic AR model of order is described, in the scalar case, by the equation

y(t) +ary(t —1)+ -+ ayy(t —n) = e(t) 1)

where the driving processt) is white noise ang(¢) denotes the measure of the process to be modeled at time
t [8, 9]. Note thate(¢) plays the double role of excitation of the system modes anctémn error. Starting
from N observationg/(1),y(2),...,y(N), the AR parameters can be consistently estimated by meahs of
well-known least squares formula

A N -1 N
0= < > sOy(t)sOqf(t)) > wy() 2)

t=n+1 t=n-+1
where
oy(t) = [yt —1) ... y(t—n)]" 3)
6=1[ar- an]". 4)



To take into account also the presence of measurement gtlisrgossible to consider “AR + noise” models of
the type

z(t)+arx(t—1)+ -+ apz(t —n)=e(t) (5)
y(t) = x(t) + w(?), (6)

wherez(t) denotes an AR process driven by the inp(tt) andy(t) is the available observation, affected by
the additive noise processt). It will be assumed that(t) andw(t) are zero—mean white processes, mutually
uncorrelated and with unknown varianeg® ando2:. It is easy to show that the model (5)—(6) is not an all—
pole model and the use of the least squares estimator (2 ledulased estimates [10, 11]. In particular, it can
be proved that the estimated AR poles are biased toward tierad the unit circle, leading thus to a smoothed
spectrum [11]. In this paper, the AR + noise models will bentdfied by means of the approach introduced
in [12], that is characterized by a reduced computationaiptexity and by a good estimation accuracy. This
method, that maps the AR + noise identification problem imtemors—in—variables one, is summarized in the
next subsection (see [12] for further details).

3.1 Identification of AR + noise models

Let us define the vectors

Pat) = [a(t)x(t — 1) ... 2(t—n)]" )
oy(t) = [y y(t —1) .. y(t —m)]" = [y() ¢y (1)] (8)
Pu(t) = [wt)w(t —1) ... w(t—n)]" (9)
Pe(t) =[e(t) 0_.. 0], (10)

and the extended parameter vector
0 =[1ar...a,] = [107]". (11)

It is possible to represent model (5)—(6) in the form

(2 (t) =@ (1) 6" =0 (12)
Py(t) = @u(t) + Pu(t). (13)
Define also the covariance matrices
Roe = B[ (22(t) = 20(6)) (2:(8) = ¢e(t)” | (14)
Ry = E[@y(t) ¢, (1)], (15)

whereE] - | denotes the mathematical expectation. By taking into auc(?), (13) and the assumptions on
e(t),w(t), itis possible to obtain the relations

Ry 0" =0 (16)
R, = R, + R*, (17)



where
R* = diag [0% + 02", 02" I,,]. (18)

Note that the AR coefficients cannot be directly estimatethbgns of (16)—(17) because the varianggs o2*
are unknown and only the matrig, can be estimated from the data sequeyde, y(2),...,y(NN). Consider
now the problem of finding the family of all nonnegative deniiagonal matrice® of the type

R = diag [07 + 03, 03y L] (19)
such that
R,— R>0, mineig(R,—R)=0. (20)
It is possible to prove [12] that this family is defined by treérp (o2, 02) defined by
0-1211 € [0’ 0-1211 max ] (21)
o? = 033 — a2 +rT0(02). (22)
where
T max = Mineig(Ry) (23)
0(0) = —(R—0y In) ', (24)

while the scalab—j, the vectorr and the matrixiz can be obtained from the following partition &f,

0_2 TT
= Y . 2
Ry |:T‘ R ( 5)
Every value ofe2 € [0,02 .. ] leads to a coefficient vector (24). Moreover, also the vagarf’ of w(t)
belongs to[ 0,02 .. ] and the associated coefficient vector coincides With.e. §(c2*) = 6*. To estimate

o2* (and thug9*) within the admissible interval, the following cost furatican be proposed [12]

J(oo) = |Rh0(o2)|3 = 0(o2)" (R))TR) 0(c2), o5 € 10,00 max» (26)
where
B(o2) = [167(02)]" (27)
Rl =E[¢)(t) o) (t)] (28)
eh(t)=[yt—n—1Dylt-n—2) ... ylt—n—q)]", (29)

andq > n is a user—chosen parameter. In fact, it is easy to show that
Rl =0. (30)

Relation (30) consists in a set @high—order Yule—Walker equations that are not directlyduseidentify the
parameterg* but only to construct the cost function (26).



In the practical implementation of the algorithm, the cemace matrices?, andRZ must be replaced by
the sample estimates

t=N

_ T
Ry=~— > @bt (31)
t=n+1
1 t=N
Rl = Rg— PERCHGEAGE (32)
t=n+q+1

so that the variance?" is estimated by minimizing/(¢2) on[0, 52 ... ], Where

62 nax = mineig(R,). (33)

w max

4 Experimental results

All measures have been performed by positioning a TSM02usexighe highest floor of the tower. A first set
of measures describes the response to a pulse applied toutieie by means of a falling mass; the considered
sampling frequency was 80 Hz. Two typical responses, caim@gtime intervals of 6 and 7 s are reported in
Figure 3; it can be observed that the measured acceleratiogiatively high, of the order of 100 mg. The
identification of these data has been performed by meangdef 44 AR and AR + noise maodels. The power
spectral density of the AR models is reported (dashed Im&jgure 4 where the power spectral density of the
AR + noise models is plotted with a solid line. It can be obsdrthat in both plots the difference between
the spectra of AR and AR + noise models is barely visible amad tthe results concerning the two data sets
are strongly congruent. Both plots show peaks at the frezgjegmof, approximately, 10 Hz, 23 Hz and 35 Hz.
Other data have been collected by recording the responge textitation provided by urban traffic. Two
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Figure 3: Measured response to falling mass impulses

typical sequences are reported in Figure 5; they refer te timtervals of slightly more than 60 s and 350 s. In
these cases the maximal acceleration that has been obgémegland 8 mg) is remarkably lower than in the
previous tests and the signal to noise ratio is worse; thiegsaand noise clearly visible in Figure 5 is due both
to the sensor and to the traffic. Also in this case order 14 ARAR + noise models have been identified from
the data. The power spectra concerning AR models are rep(dteshed line) in Figure 6 versus the power
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spectra (solid line) of the AR + noise models. A peak at 10 Hzlma clearly observed in all plots. The plot

Figure 6: Power spectra of AR (dashed) and AR+noise (solmtjats (urban traffic)



associated with the first AR model shows also a small pealbdt 3.
The plots concerning AR + noise models show a large peak atzi€he first plot shows also modest peaks
at 3.5 Hz, 17 Hz and 23 Hz, the second one shows small peaks+, B Hz and 35 Hz.

5 Concluding remarks

This paper has described some results concerning the mioalgsas of a medieval tower now included in a
more recent building and located in Bologna, Italy. The gsialhas been performed by means of MEMS—
based sensors TSM02 endowed with local computational déjesb The purpose of these tests has been the
evaluation of the performance of a new SHM system and the adegn of the results obtained by identifying
AR and AR + noise models. Both models have given congruenttseAR + noise models, however, lead to
more detailed analyses when the data are characterizeddnysigmal to noise ratios as happens with urban
traffic excitation.
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